HOMOISOPAVINANES-A HIGHLY PROBABLE **CLASS OF PHENETHYLISOOUINOLINE ALKALOIDS**

S. F. DYKET and P. WARREN School of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England

(Received in UK 5 February 1979)

Abstract-Homoisopavinanes have been prepared by acid-catalysed cyclisation of the appropriately substituted aminoacetaldehyde dimethylacetal derivatives. The characteristic mass spectral fragmentation patterns of these homoisopavinanes is described.

In recent years a number of alkaloids has been identified that can be regarded as derivatives of 1-phenethylisoquinoline.¹⁻⁴ viz. simple 1-phenethyl-1.2.3.4-tetrahydroisoquinolines, bisphenethyltetrahydroisoquinolines, androcymbines, colchicine, homomorphinandiones, homoproaporphines, homoaporphines and homoerythrines. So far these alkaloids have been isolated from plants in the Androcymbium, Colchicum, Kreysigia, Bulbocodium, Schelhammora and Phelline families. Homoprotoberberines, although not yet known as natural products, have been synthesized, $5-7$ and it is our belief that derivatives of the homopavinane (1) and homoisopavinane (2) ring systems represent highly probable examples of the phenethylisoquinoline alkaloid class. A synthesis of (\pm) -homoargemonine (1a) has been reported⁸ by a method analogous to that used in the preparation of the naturally occuring pavinanes.⁹ In this paper we describe syntheses of derivatives of the hitherto unknown homoisopavinane ring system.

was reduced to the amino acetal derivative 4a. Treatment of 4a with ethanolic, aqueous HCl, under conditions used¹¹ successfully for the preparation of isopavinanes, yielded a brown basic oil which was found (tlc) to be a mixture of two major and several minor components. Chromatography over silica (Experimental) gave the required homoisopavinane 2a as a beige, amorphous solid in 39% yield. It was identified by its ¹H NMR spectrum (only FOUR singlets in the aromatic region), but especially by the mass spectrum (Scheme 1). As in the case of the isopavinanes, the molecular ion and the $(M-1)^+$ ion are intense; the M⁺ ion is the base peak in the case of 2a. Also like the behaviour of isopavinanes this homoisopavinane exhibits a retro Diels-Alder fragmentation to give peak "a" at m/e 326. However, unlike isopavinanes, further fragmentation of "a" occurs to give the stable ion "b" at mle 298. In an alternative fragmentation of the molecular ion, the single isoquinolinium

1a: $R_1 = R_2 = R_3 = R_4 = OMe$; $R_5 = Me$ **1b:** $R_1 = OH$; $R_2 = OMe$; $R_3 + R_4 = CH_2O_2$; $R_6 = H$

2a: $R_1 = R_2 = R_3 = R_4 = OMe$; $R_6 = H$ 2b: $R_1 = R_2 = R_3 = R_4 = OMe$; $R_6 = Me$ 2c: $R_1 = R_3 = R_4 = OMe$; $R_2 = OH$: $R_6 = H$ 2d: $R_1 = R_2 = R_3 = OMe$; $R_4 = OH$; $R_5 = H$ 2e: $R_1 = OH$: $R_2 = OMe$: $R_3 + R_4 = CH_2O_2$: $R_5 = H$

The first target was the tetramethoxy, secondary amine 2a since, after N-methylation, a comparison with 1a would be possible. The ketone 3a¹⁰ was condensed with aminoacetal and the resultant imine, without isolation,

†Present address: Department of Chemistry, Queensland Institute of Technology, Brisbane, Queensland 4001, Australia. TET Vol. 35, No. 15-E

ion "c" is produced at m/e 190; a similar fragmentation occurs in the isopavinanes themselves. All of these fragmentations are supported by the appearance of the appropriate metastable ions. Treatment of the free base 2a with formaldehyde, followed by reduction with NaBH₄, gave the N-methylhomoisopavinane 2b. That this makrial is the homoisopavinane 2b and not the homopavinane la was confirmed by an examination of the mass spectrum, where fragmentations entirely analogous to those shown in Scheme 1 for 2a were recorded. Furthermore, high resolution mass measurement of

the parent ion [Found: 369.1926; $C_{22}H_{27}NO_4$ requires: 369.1940] and of the ion "b" [Found: 298.1220; $C_{18}H_{18}O_4$ requires: 298.1205] confirmed these assignments. The mass spectral data reported by Stermit and Williams (loc. χ cit) can be rationalised in terms of fragmentations similar to those exhibited by pavinanes,¹² and, summarised in Scheme 2. However, unlike pavinanes, homopavinanes can produce only one isoquinolinium ion.

The other major component (11%) from the treatment of 4a with HCl was isolated as a white solid, m.p. 106- 108". From the 'H NMR and especially from the mass

Scheme 2.

spectral evidence, it was concluded that this component was a mixture of two monophenolic homoisopavinanes; all attempts to separate them failed. Phenolic functions were suggested by the observed bathochromic shift in NaOH solution. TWO isoquinolinium fragments were detected in the mass spectrum, one was the ion "c" at m/e 190, and the second, at m/e 176, corresponds to a monomethoxy monohydroxyisoquinolinium cation radical. Peaks at m/e 312 and m/e 284 correspond to retro Diels Alder fragmentation, but the ions corresponding to "a" and "b" are presumably isomers derived from the two different monohydroxy homoisopavinanes. The most probable structures for these compounds are 2c and 2d. since demethylation is most likely to occur at the methoxyl groups para to the position of ring-closure of da.

The acid-catalysed cyclisation of 4b was chosen for study since, on the basis of experience in the pavinane and isopavinanes series,¹³ it might be anticipated that cyclisation would give rise to a mixture of the homopavinane 1b and the homoisopavinane 2e. In the event a mixture of bases resulted, consisting of one major component and several minor ones. The major component was isolated after chromatography as a beige solid in 63% yield. The structure was established as 2e from UV, ¹H NMR and especially mass spectral data. The fragmentation pattern, proved to be entirely analogous to that of 2a (Scheme 1) except that the anthracene derivative at m/e 268, analogous to "b" proved to be the base peak. The homopavinane (1b) was not found in the reaction mixture, presumably because the intermediate 4-hydroxy-1-phenethyltetrahydroisoquinoline (5) undundergoes cyclisation to 2e more rapidly than dehydration can occur to give the 1,2-dihydroisoquinoline (6), the precurser of 1b.

EXPERIMENTAL

UV spectral data refer to EtOH solns, and IR spectra were measured on Nujol mulls. Proton NMR spectra were measured at 60 MHz or 100 MHz, and chemical shifts are expressed in ppm downfield from internal TMS. M.ps are uncorrected. Mass spectral measurements were made at low resolution on AEI MS12, and at high resolution with AEI MS 902 instruments.

N - [1,3 - bis (3,4 - Dimethoxyphenyl) propyl] aminoacetaidehyde dimethylacetal (4a)

The ketone 3a ¹⁰(6.0g) and aminoacetal (30ml) were heated under reflux in N₂ for 4 hr. The resultant soln was diluted with EtOH (100 ml) and NaBH₄ (1.0g) added portionwise with stirring. Stirring was continued at r.t. for 16 hr, then excess aminoacetal and EtOH removed under reduced pressure. The residue was dissolved in Et₂O(100 ml), the soln washed with $H_2O(2 \times 50 \text{ m})$ and extracted with ice cold 2M H_2SO_4 (3 × 50 ml). After washing with Et_2O , the combined acid extracts were basified (2M NH₃) soln) and extracted with $Et₂O(3 \times 100 \text{ ml})$. Evaporation of the dried (Na₂SO₄) Et₂O soln gave the required 4a as a colourless oil (61%), $\lambda_{max}(\epsilon)$: 235(17,200); 282(7800), ¹H NMR(CDCl₃): 7.0 -6.58 m [6] $(6 \times Ar - H)$; 4.4t, J = 5 Hz [1] (CH(OMe)₂); 3.9s and 3.85 s [12] $(4 \times Ar - OMe)$; 3.52t J = 7 Hz [1] (> CH-N-collapsed to singlet by irradiation at 1.968 ; $3.35 s[3]$ and $3.30 s[3]$ (CH(OCH₃)₂; 2.54d J = 5 Hz [2] (-CH₂-N-collapsed to singlet by irradiation at 4.48); 2.5t $J = 7$ Hz (Ar-CH₂); 2.0 m [2] (-CH₂- CH_2-N ; 1.67 b.s[1] (NH-removed by D₂O). [Found: $C.63.1$; H,7.1; N,3.5. C₂₂H₃₃NO₆ requires: C,63.2; H,7.4; N,3.9%].

Acid-catalysed cyclisation of 4a. Conc HCl (50 ml) was added to a soln of 4a (1.0g) in EtOH (50 ml), and the mixture was heated under reflux for 4 hr, poured into H₂O(200 ml), washed with $Et_2O(2 \times 50$ ml), basified with conc NH₃ and extracted with $Et_2O(3 \times 100 \text{ ml})$. Evaporation of the combined dried (Na₂SO₄) Et₂O extracts left a brown oil (0.76 g). Tlc (silica/10%MeOH in CHCl₃) gave two major components at R_f 0.40 and 0-20 and four other spots at R_t 0-75, 0-69, 0-58 and 0-1. Column chromatography (silica/CHCl₃) afforded partially purified samples of the two major components. Further purification of each was achieved by preparative tlc on 1.0 mm thick $SiO₂ PF₂₅₄$ layers using multiple elution with 5% MeOH in CHCl₃.

The component R_f 0.40 gave $2a$ (39%) as amorphous solid. $\lambda_{max}(e)$: 233(13,500); 287(6600). ¹H NMR(CDCl₃): 6.75s [2] $(2 \times Ar-H)$; 6.57s [1] (Ar-H); 6.51s [1] (Ar-H); 4.46 b s [1] (CH-N); 4.02 b s [1] (Ar-CH-Ar); 3.86-3.79 four singlets [12] (4 × OMe); 2.88 b s [2] $(-CH₂-N)$; 2.26 b s [1] (NH-removed by D₂O); 2-0 b Absorption [4] $(-CH₂-CH₂-)$. M.S. m/e 355 M⁺ (100%); 354(M-1)⁺ (90%); 326(7%); 298(44%); 190(81%). m⁺ 272-4.
[Found: C, 70-1; H,7-3; N, 3-6. C₂₁H₂₃NO₄ requires: C, 71-0; H, 7-0; N, 3-9%). Hydrochloride m.p. 242-244 [Found: C, 64-2; H, 6.65; N, 3.7; Cl, 9.25. C₂₁H₂₆NO₄Cl requires: C, 64.4; H, 6.6; N, 3.6; Cl, 9.1%].

The second major component from the column, purified by prep tic as above was obtained [11%] as a white solid, m.p. 106-108° λ_{max} (e): 232(10,800); 287(6200). After addition of NaOH λ_{max} 232, 293 and 300. M.S. m/e 341(100%); 340(96%); 312(9%); 284(61%); 190(97%); 176(52%). m* 311, 285.5; 283, 106, 91 [Found: C, 69-6; H, 6-8; N, 3-85. C₂₀H₂₃NO₄ requires: C, 70-4; H, 6.7; N, 4.1%].

N-Methylation of the homoisopavinane (2a). The base 2a (113 mg) was dissolved in MeOH (10 ml) and HCHO, (37-41% W/V 1 ml) added. After stirring 1 hr NaBH₄ (0-2 g) was added portionwise and mixture stirred at r.t. 16 hr. The soln was acidified (dil. HCl) and evaporated. The residue was dissolved in H_2O (25 ml) and made basic (NH₃ soln), then extracted with $CH₂Cl₂$ (2×25 ml). The combined extracts were washed with H₂O (12.5 ml), dried (Na₂SO₄) and evaporated to leave 2b as a white solid (85%), λ_{max} (e): 233(12,400); 285(6,700), ¹H NMR (CDCl₃); 6.77 s [2] (2 × Ar-H); 6.55 s [1] (Ar-H); 6.50s [1] (Ar-H); 4.0t [1] (CH-N); 3.92-3.76 three singlets [13] $(4 \times$ OMe + Ar-CH-Ar); 3.04 dd, $J = 10 Hz$, 4 Hz [1] and 2.60 dd, $J = 10 Hz$ and 4 Hz [1] (CH-CH_z-N); 2-45 [3] (NMe); 2-3-1-6 m [4] (CH_z-CH₂). M.S. mle 369 (M⁺) (93%); 368(M-1)⁺ (97%); 338(4%); 326(4%);
311(4%); 298(19%); 218(3%); 204(100%). M⁺ Found: 369-1926. $C_{22}H_{27}NO_4$ requires: 369-1940. Peak at m/e 298, mass found: 298.1220; C₁₈H₁₈O₄ requires: 298.1205. Hydrochloride, colourless needles, m.p. 220-223° from acetone [Found: C, 64-2; H, 6-8; N, 3-3; Cl, 8-5. C₂₂H₂₈NO₄ Cl requires: C, 65-1; H, 6-9; N, 3-45; Cl, 8-75%).

 $1 - (3-Mathoxy - 4 - benzyloxyphenyl) -3 - (3,4 - methylenedioxy$ phenyl)propen - 1 - one. 3 - Methoxy - 4 - benzyloxyacetophenone $(23.43 g)$ and 3,4-methylenodioxybenzaldehyde $(13.73 g)$ were dissolved in EtOH (130 ml) and 2 M NaOH (20 ml) added. The required coß- unsaturated ketone crystallised out almost immediately, but the mixture was left at 0° for 16 hr before the product was collected. Recrystallation from EtOH gave yellow needles m.p. 137-138° [Found: C, 77.4; H, 6.2. C24H204 requires: C, 77.5; H $6-2%$].

 $1 - (3 - Methoxy - 4 - benzyloxyphenyl) - 3 - (3,4 - methyl$ lenedioxyphenyl) - propan - 1 - one (3b). The above chalcone (5.0 g) was dissolved in glacial AcOH (150 ml) and stirred with H₂ in the presence of Adam's catalyst (200 mg) for 3 days at r.t. and

atmospheric pressure. After filtration, the soln was evaporated and the residue crystallised from EtOH to 3b (66%) as white needles, m.p. 93-5-94° [Found: C, 77-1; H, 5-8, $C_{24}H_{22}O_4$ requires: C, 77.0; H, 5.9%]

 $N - [1 - Methoxy - 4 - benzyloxyphenyl) - 3 - (3,4 - methyl)$ lenedioxylphenyl) - propyl]aminoacetaldehyde dimethyl acetal $(4b)$. The ketone 3b $(3.0 g)$ and amino acetal $(15 ml)$ were heated under reflux in N_2 for 5 hr. After dilution with EtOH(50 ml), NaBH₄ (0.5 g) was added portionwise with stirring at rt. After 16 hr the EtOH and excess of amino acetal were removed under reduced pressure, and the residue was dissolved in Et₂O (100 ml). The soln was washed with H_2O (2×50 ml), then extracted with ice-cold 2 M H_2SO_4 (3 \times 50 ml). The combined acid extracts were washed with Et₂O (100 ml), basified with NH₃ soln and extracted with Et_2O (3×100 ml). Evaporation of the combined, dried (Na₂SO₄) extracts left 4b as a colourless oil (61%), λ_{max} (e): 223(13,800); 234(15,800); 283(8300), ¹H NMR(CDCl₃): 7.5-7.18 m[5] (C_oH₃-CH₂O); 69-64 m[6] (6×Ar-H); 3-83 s[2]
(CH₂O₂); 5-06 s[2] (C_oH₃CH₂O); 4-3t J = 5 Hz[1] (CH(OMe)₂); 3.83 s $[3]$ (Ar-OMe); 3.42 t, $\overline{J} = 6H$ [1] (CH-N-collapsed to singlet by irradiation at 1.918); 3.28 s [3] and 3.23 s [3] (CH-OCH3)2); 2.48 d, $J = 5 Hz$ [2] (-CH₂-N-collapsed to singlet by irradiation at 4.38); 2.4t, $J = 8$ Hz [2] (Ar-CH₂); 1.91 m [2] (CH₂-CH₂); 1.52 b s [1] (NH-removed by D₂O). [Found: C, 70-0; H, 6.5; N, 3.0. C₂₀H₁₂NO₅ requires: C. 70-3: H. 6.75: N. 2.9%1.

Acid catalysed cyclisation of 4b. Conc HCl (50 ml) was added to a soln of $4b(1.0a)$ in EtOH (50 ml) and the mixture was heated under reflux for 4 hr, then poured into H₂O (200 ml), and the resultant soln was washed with $Et₂O$ (2 × 50 ml). The pH of the aqueous acid soln was adjusted to 9-0 with dil. NH₃, and the mixture extracted with $CH₂Cl₂$ (3 × 100 ml). Evaporation of the dried (Na₂SO₄) extracts left a yellow gum. Column chromatography over SiO₂ and elution with 1% MeOH in CHCl₃ gave 2e as a beige solid (63%), λ_{max} (e): 224(7500); 291 (5300). After addition of NaOH, λ_{\max} (e): 224(9700); 245 (7600); 297 (5700), ¹H NMR (CDCl₃): 6-75 s [1], 6-72 s [1]; 6-55 s [1] and 6-50 s [1] $(Ar-H's 5.90 s [2] (CH₂O₂); 5.50 b s [2] (OH + NH-removed by$ D₂0); $4.52 b$ s [1] $(> CH-N)$; $3.95 b$ s [1] $(Ar-CH-Ar)$; $3.80 s$ [3] (OMe); 2.90 b s [2] (CH₂-N); 2.02 b absorption [4] (CH₂-CH₂). M.S. m/e 325 (M⁺) (71%); 324(M-1)⁺ (73%); 296(16%); 268(100%); 190(89%); 176(83%). m^{*} 242-5. Hydrochloride m.p. 230-232° (dec) [Found: C, 63.4; H, 5.7; N, 3.7; Cl, 9.35. C₁₉H₂₀NO₄Cl requires: C, 63.1; H, 5.5; N, 3.9; Cl, 9.8%].

REFERENCES

- ¹M. Shamma, The Isoquinoline Alkaloids. Academic Press, New York (1972).
- ²T. Kametani and K. Fukumoto, M.T.P. International Review of Science, Organic Chemistry Series One (Edited by K. Wiesner) Vol. 9, Chap 6.
- ³SPR The Alkaloids, (Edited by J. E. Saxton) The Chemical Society, Vol. 1, p. 120 (1971); Vol. 3, p. 163 (1973).
- ⁴S. F. Dyke, Rodd's Chemistry of Carbon Compounds (Edited by S. Coffey), 2nd Edn, Vol IV^H, Chap 36, Elsevier, Amsterdam (1978).
- A. Brossi and S. Teitel, Helv. Chim. Acta 52, 1228 (1969).
- ⁶A. Brossi, A. I. Rachlin, S. Teitel, M. Shamma and M. J. Hillman, Experentia 24, 766 (1968).
- ⁷T. Kametani, T. Terui, T. Ogino and K. Fukumoto, J. Chem. Soc. (C), 874 (1969).
- ⁸F. R. Stermitz and D. K. Williams, J. Org. Chem. 38, 2099 (1973) .
- ⁹A. R. Battersby and R. Binks. J. Chem. Soc., 2888 (1955); A. C. Barker and A. R. Battersby, Ibid. (C), 1317 (1967).
- ¹⁹T. Richardson, R. Robinson and E. Seijo, Ibid. 835 (1937).
- ¹¹S. F. Dyks, A. C. Ellis, R. G. Kinsman and A. W. C. white, Tetrahedron 30, 1193 (1974) and refs therein.
- ¹²R. H. F. Manake, K. H. Shin, A. R. Battersby and D. F. Shaw, Can. J. Chem. 43, 2183 (1965).
- ¹³S. F. Dyke, R. G. Kinsman, P. Warren and A. W. C. White, Tetrahedron 34, 241 (1978).